Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 2, 2026
-
Abstract Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait‐based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environments. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.more » « less
-
ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
